技術(shù)前沿 |新一代功能納米鐵材料及水污染控制中的應(yīng)用
導(dǎo) 讀:納米零價鐵(nanoscale zero-valent iron, nZVI)是目前工程化應(yīng)用最廣泛的納米環(huán)境修復(fù)材料之一,憑借其高反應(yīng)活性、獨(dú)特的核殼性質(zhì)、低成本和環(huán)境友好性,可實現(xiàn)污染物的高效去除。但因自身磁性和強(qiáng)還原性等,納米零價鐵仍存在易團(tuán)聚沉淀、遷移能力差和易過度還原污染物等問題。本文利用介孔(孔徑2-50 nm)獨(dú)特的納米限域空間,發(fā)展了納米鐵材料構(gòu)筑新方法,開發(fā)了新一代環(huán)境功能介孔納米鐵材料,剖析了納米鐵界面調(diào)控污染物(包括重金屬、有機(jī)物和硝酸鹽氮)遷移轉(zhuǎn)化行為的規(guī)律和機(jī)理,開拓了納米鐵材料在污染物催化氧化和還原方面的應(yīng)用,為鐵環(huán)境化學(xué)界面污染物轉(zhuǎn)化控制提供基礎(chǔ)理論和技術(shù)支撐。
1 背景與問題
納米零價鐵粒徑約為1-100 nm,具有獨(dú)特的“核-殼”結(jié)構(gòu)和物理化學(xué)性質(zhì)。與普通零價鐵相比,其粒徑小、比表面積大、比表面能高,在與污染物反應(yīng)時具有速度快、反應(yīng)更徹底等優(yōu)點(diǎn)。1997年,張偉賢教授課題組采用硼氫化鈉液相還原法合成納米零價鐵及納米鐵雙金屬(Pd-nZVI),并成功將其應(yīng)用在地下水的三氯乙烯和多氯聯(lián)苯降解中。自此,納米零價鐵引起了國內(nèi)外環(huán)境領(lǐng)域?qū)W者的廣泛關(guān)注。經(jīng)過20多年的發(fā)展,納米零價鐵環(huán)境污染修復(fù)技術(shù)日趨成熟(圖1)。同時,處理污染物的研究范圍也從鹵代有機(jī)物逐漸擴(kuò)展到染料、殺蟲劑(如林丹和DDT)、炸藥(如TNT)等其他有機(jī)污染物,重金屬(Pb、Cr、As、U等)、硝酸鹽、磷酸鹽、高硫酸鹽、硫化物等非金屬無機(jī)污染物。
但是由于其自身特點(diǎn),納米零價鐵仍然存在著較大的應(yīng)用瓶頸,一方面表現(xiàn)在易團(tuán)聚。因粒徑小、以及本身具有的磁性,納米鐵很容易發(fā)生團(tuán)聚,導(dǎo)致反應(yīng)活性急劇下降,和遷移性差等問題。另一方面,由于其較強(qiáng)的還原能力(E0(Fe2+/Fe0)= -0.44 V)),容易將一些污染物過度還原,形成另一種有害物質(zhì)。因此,改善納米零價鐵的分散性、穩(wěn)定性和反應(yīng)活性成為熱點(diǎn)研究問題。目前改性納米零價鐵的方法有:添加高分子穩(wěn)定劑、制備納米零價鐵雙金屬體系、負(fù)載型納米零價鐵、以及硫化納米鐵等。
有序介孔材料是一類新型多孔納米結(jié)構(gòu)材料,孔道尺寸介于2到50 nm,長程排列有序,并在介觀上排列成特殊結(jié)構(gòu)3。相比于通常的多孔載體材料(如活性炭),有序介孔碳作為載體具有不可比擬的優(yōu)勢:(1)均一可控的介孔結(jié)構(gòu)可限域顆粒尺寸大小,并提高材料穩(wěn)定性;相互連通的孔道方便反應(yīng)物質(zhì)和電子等傳輸;巨大的比表面提供更多活性位點(diǎn);(2)容易通過合成控制與異質(zhì)元素前驅(qū)體間作用,實現(xiàn)材料性質(zhì)精確調(diào)控。
2 新一代納米鐵的開發(fā)與應(yīng)用
2.1 半嵌入式納米鐵顆粒加強(qiáng)穩(wěn)定性
針對納米鐵的快速團(tuán)聚使其在水介質(zhì)中遷移能力差問題,在介孔材料分子自組裝過程中通過乙酰丙酮或檸檬酸與鐵源強(qiáng)配位,限制熱解中鐵晶粒的遷移和團(tuán)聚,合成了納米零價鐵半嵌入碳骨架、半暴露于孔道的特殊結(jié)構(gòu)(圖2)。該結(jié)構(gòu)具有極強(qiáng)的保護(hù)和穩(wěn)定作用,可延長200倍沉降時間,極大提高了其在介質(zhì)中的遷移能力4。同時,通過調(diào)節(jié)前驅(qū)體用量,控制孔道中鐵界面與污染物的接觸實現(xiàn)了緩釋效果。該方法得到8 nm且均勻分布的鐵顆粒,粒徑相比傳統(tǒng)納米鐵縮小10倍,在水體痕量重金屬污染物(如Au等)的還原富集應(yīng)用中表現(xiàn)出長效性和優(yōu)異的去除效率5。進(jìn)一步將該配位作用輔助自組裝技術(shù)拓展至其他鐵基材料體系,成功合成了介孔空間半嵌入式納米鐵鈀(FePd)、鐵鉑(FePt)雙金屬復(fù)合材料,其在廢水脫氯應(yīng)用中表現(xiàn)持久脫氯的可控性和穩(wěn)定性。
2.2 高分散納米鐵基材料提升反應(yīng)活性
針對納米零價鐵極易團(tuán)聚而導(dǎo)致反應(yīng)活性急劇下降的問題,提出了介孔空間引入親氧助劑預(yù)分散策略,實現(xiàn)了納米鐵的高度分散(圖3)。利用稀土鈰與介孔孔道表面硅羥基較好親和性,預(yù)先形成納米“阻隔島”,其表面缺陷與鐵源的相互作用,使Fe3+向CeO2內(nèi)部擴(kuò)散,置換晶格中Ce4+,形成Fe-Ce-O固溶體,合成得到高度均勻分散的Fe/Ce納米顆粒(~8 nm)。同時兩者協(xié)同產(chǎn)生更多氧空位實現(xiàn)對污染物的催化降解6。該策略可拓展至其它納米顆粒的高度分散合成,如銅錳催化活性位點(diǎn)。應(yīng)用于高級催化氧化染料污染物時,活性位點(diǎn)的高度分散極大提高了H2O2向高氧化活性?OH的催化轉(zhuǎn)化。實驗結(jié)果表明限域效應(yīng)使介孔空間內(nèi)生成的?OH瞬時濃度提高,使進(jìn)入并吸附在介孔中的分子尺寸較大且難降解有機(jī)污染物快速降解礦化,大幅提高了材料的催化降解性能。
2.3 介孔孔道表面鐵電子結(jié)構(gòu)調(diào)控提高反應(yīng)選擇性
納米零價鐵與硝酸鹽具有高反應(yīng)活性而被廣泛研究,但反應(yīng)只能在酸性條件下進(jìn)行,極易過度還原產(chǎn)生銨根,形成二次污染,同時自身易被氧化失活。因此,鐵界面硝酸鹽還原活性和脫氮選擇性的調(diào)控仍缺乏有效方法。在溶液揮發(fā)誘導(dǎo)自組裝過程中,發(fā)展了含氮有機(jī)分子輔助組裝等方法,通過適量金屬或非金屬前驅(qū)體,形成雜原子摻雜,重構(gòu)孔道表面鐵活性位點(diǎn)電子結(jié)構(gòu),得到了性質(zhì)均一且比例可調(diào)的合金(FeCo、FeNi)、非金屬配位FeNx結(jié)構(gòu),為降低污染物反應(yīng)活化能壘、改變反應(yīng)路徑提供了有效的反應(yīng)空間7。在介孔碳孔道構(gòu)建的高分散納米鐵中,發(fā)現(xiàn)鐵碳表面具有更多較高能級的占據(jù)d軌道,易與硝酸鹽π*軌道成鍵,利于電子的關(guān)鍵第一步轉(zhuǎn)移并促使N-O鍵斷裂(圖4)。進(jìn)一步調(diào)控鐵外層碳?xì)さ暮穸群捅砻娴獡诫s,核內(nèi)鐵納米粒子提供額外電子降低了FeNx的Mulliken電荷及氮摻雜碳表面的局域功函數(shù),從而改變對硝酸鹽的吸附強(qiáng)度,其硝酸鹽去除能力可達(dá)到99%,氮?dú)膺x擇性提高至85%。
3 技術(shù)意義和前景
面對環(huán)境污染控制需求,從環(huán)境基礎(chǔ)材料性能構(gòu)筑入手,開發(fā)了系列新型介孔限域型納米鐵,增強(qiáng)了納米顆粒的分散和穩(wěn)定性,提高了其在水介質(zhì)中遷移能力,延長了反應(yīng)持久性,同時實現(xiàn)了反應(yīng)活性位點(diǎn)的增加,從而實現(xiàn)反應(yīng)效率的大幅提升;另外通過異質(zhì)原子對介孔空間鐵表面電子調(diào)控實現(xiàn)了污染物降解的選擇性。該研究拓寬了鐵基納米材料化學(xué)在污染控制領(lǐng)域的應(yīng)用。在實際應(yīng)用中,該系列新型材料面臨費(fèi)用較高的問題,需要進(jìn)一步通過優(yōu)化材料合成降低成本。但制備方法和反應(yīng)規(guī)律可應(yīng)用至其他廉價多孔材料中,現(xiàn)階段為環(huán)境污染控制提供了新型納米材料構(gòu)筑新途徑和技術(shù)思路。
聲明:素材來源于網(wǎng)絡(luò)如有侵權(quán)聯(lián)系刪除。