低C/N比廢水生物脫氮技術(shù)匯總!
全康環(huán)保:傳統(tǒng)生物脫氮方法在廢水脫氮方面起到了一定的作用,但仍存在許多問(wèn)題。如:氨氮完全硝化需消耗大量的氧,??加了動(dòng)力消耗;對(duì)C/N比低的廢水,需外加有機(jī)碳源;工藝流程長(zhǎng),占地面積大,基建投資高等。
近年來(lái),生物脫氮領(lǐng)域開(kāi)發(fā)了許多新工藝,主要有:同步硝化反硝化;短程硝化反硝化;厭氧氨氧化和全程自養(yǎng)脫氮。
1、同步硝化反硝化(SND)
自20世紀(jì)80年代以來(lái), 研究人員在一些沒(méi)有明顯缺氧及厭氧段的活性污泥法工藝中, 曾多次觀察到氮的非同化損失現(xiàn)象, 即存在有氧情況下的反硝化反應(yīng)、低氧情況下的硝化反應(yīng)。在這些處理系統(tǒng)中,硝化和反硝化往往發(fā)生在相同的條件下或同一處理空間內(nèi), 這種現(xiàn)象被稱作同步硝化反硝化(SND),亦有研究人員將這種現(xiàn)象中的反硝化過(guò)程稱之為好氧反硝化。
工藝微生物學(xué)家在純種培養(yǎng)的研究中發(fā)現(xiàn),硝化細(xì)菌和反硝化細(xì)菌有非常復(fù)雜的生理多樣性,如:Roberton和Lloyd等證明許多反硝化細(xì)菌在好氧條件下能進(jìn)行反硝化;Castingnetti證明許多異養(yǎng)菌能進(jìn)行硝化。這些新發(fā)現(xiàn)使得同時(shí)硝化反硝化成為可能,并奠定了SND生物脫氮的理論基礎(chǔ)。硝化與反硝化的反應(yīng)動(dòng)力學(xué)平衡控制是同步硝化反硝化技術(shù)的關(guān)鍵。
在該工藝中,硝化與反硝化反應(yīng)在同一個(gè)構(gòu)筑物中同時(shí)進(jìn)行,與傳統(tǒng)的工藝相比具有明顯的優(yōu)越性:(1)節(jié)省反應(yīng)器體積和構(gòu)筑物占地面積,減少投資;(2)可在一定程度上避免NO2-氧化成NO3-再還原成NO2-這兩步多余的反應(yīng),從而可縮短反應(yīng)時(shí)間,還可節(jié)省DO和有機(jī)碳;(3)反硝化反應(yīng)產(chǎn)生的堿度可以彌補(bǔ)硝化反應(yīng)堿度的消耗,簡(jiǎn)化pH調(diào)節(jié),減少運(yùn)行費(fèi)用。MBBR工藝是同步硝化反硝化的典型工藝。
MBBR工藝原理是通過(guò)向反應(yīng)器中投加一定數(shù)量的懸浮載體,提高反應(yīng)器中的生物量及生物種類,從而提高反應(yīng)器的處理效率。由于填料密度接近于水,所以在曝氣的時(shí)候,與水呈完全混合狀態(tài),微生物生長(zhǎng)的環(huán)境為氣、液、固三相。載體在水中的碰撞和剪切作用,使空氣氣泡更加細(xì)小,增加了氧氣的利用率。另外,每個(gè)載體內(nèi)外均具有不同的生物種類,內(nèi)部生長(zhǎng)一些厭氧菌或兼氧菌,外部為好養(yǎng)菌,這樣每個(gè)載體都為一個(gè)微型反應(yīng)器,使硝化反應(yīng)和反硝化反應(yīng)同時(shí)存在,從而提高了處理效果。
2、短程硝化-反硝化(SHARON)
1975年,Voets等發(fā)現(xiàn)了硝化過(guò)程中亞硝酸鹽積累的現(xiàn)象,并首次提出了短程硝化反硝化生物脫氮的概念。1986年Sutherson等證實(shí)了其可行性,國(guó)內(nèi)外研究表明,與傳統(tǒng)的硝化反硝化相比,短程硝化反硝化具有可減少25%左右的需氧量,降低能耗;節(jié)省反硝化階段所需要的有機(jī)碳源,降低了運(yùn)行費(fèi)用;縮短HRT,減少反應(yīng)器體積和占地面積;降低了污泥產(chǎn)量;硝化產(chǎn)生的酸度可部分地由反硝化產(chǎn)生的堿度中和。
因此,對(duì)許多低C/N比廢水,目前比較有代表性的工藝有亞硝酸菌與固定化微生物單級(jí)生物脫氮工藝,單一反應(yīng)器通過(guò)亞硝酸鹽去除氨氮(SHARON)工藝。
SHARON工藝是由荷蘭Delft技術(shù)大學(xué)開(kāi)發(fā)的一種新型脫氮工藝,其基本原理是在同一個(gè)反應(yīng)器內(nèi),在有氧條件下,利用氨氧化菌將氨氮氧化成亞硝態(tài)氮,然后在缺氧條件下,以有機(jī)物為電子供體,將亞硝態(tài)氮反硝化成N2。將氨氧化控制在亞硝化階段是該工藝的關(guān)鍵。
SHARON工藝的成功在于:
(1)利用了溫度這一重要因素,提高了亞硝酸細(xì)菌的競(jìng)爭(zhēng)能力;
(2)利用完全混合反應(yīng)器在無(wú)污泥回流條件下污泥停留時(shí)間(SRT)與水力停留時(shí)間(HRT)的同一性,控制HRT大于亞硝酸細(xì)菌的世代時(shí)間,小于硝酸細(xì)菌的世代時(shí)間,實(shí)現(xiàn)硝酸細(xì)菌的“淘洗”,使反應(yīng)器內(nèi)主要為亞硝酸細(xì)菌;
(3)控制較高的pH值,不僅抑制了硝酸細(xì)菌,也消除了游離亞硝酸(FNA)對(duì)亞硝酸細(xì)菌的抑制。
1998年在荷蘭已有此類污水處理廠投入運(yùn)行。
盡管SHARON工藝按有氧/缺氧的間歇運(yùn)行方式取得了較好的效果,但不能保證出水氨氮的濃度很低。該工藝更適于對(duì)較高濃度的含氨氮廢水的預(yù)處理或旁路處理。
3、厭氧氨氧化(ANAMMOX)工藝
1994年,Kuenen等邸發(fā)現(xiàn)某些細(xì)菌在硝化反硝化反應(yīng)中能利用硝酸鹽或亞硝酸鹽作電子受體將氨氮氧化成N2和氣態(tài)氮化物;1995年,Mulder等人在研究脫氮流化床反應(yīng)器時(shí)發(fā)現(xiàn),氨氮可在厭氧條件下消失,氨氮的消失與硝氮的消耗同時(shí)發(fā)生并成正相關(guān)。不久,VandeGraaf等人進(jìn)一步證實(shí)該過(guò)程是一個(gè)微生物反應(yīng),并且實(shí)驗(yàn)結(jié)果還表明,亞硝態(tài)氮是一個(gè)更為關(guān)鍵的電子受體。因此,可以把ANAMMOX完整的定義為,在厭氧條件下,微生物直接以氨氮作為電子供體,以亞硝態(tài)氮為電子受體,轉(zhuǎn)化為Nz的微生物反應(yīng)過(guò)程。
ANAMMOX工藝主要采用流化床反應(yīng)器,由于是在厭氧條件下直接利用氨氮作電子供體,無(wú)需供氧、無(wú)需外加有機(jī)碳源維持反硝化、無(wú)需額外投加酸堿中和試劑,故降低了能耗,節(jié)約了運(yùn)行費(fèi)用。同時(shí)還避免了因投加中和試劑有可能造成的二次污染問(wèn)題。
由于NH3-N和NO2-N同時(shí)存在于反應(yīng)器中,因此,ANAMMOX工藝與一個(gè)前置的硝化過(guò)程結(jié)合在一起是非常必要的,并且,硝化過(guò)程只需將部分的NH3-N氧化為NO2-N。據(jù)此,荷蘭Delft技術(shù)大學(xué)開(kāi)發(fā)了SHARON-ANAMMOX聯(lián)合工藝,該聯(lián)合工藝?yán)肧HARON反應(yīng)器的出水作為ANAMMOX反應(yīng)器的進(jìn)水,具有耗氧量少、污泥產(chǎn)量低、不需外加有機(jī)碳源等優(yōu)點(diǎn),有很好的應(yīng)用前景,成為生物脫氮領(lǐng)域內(nèi)的一個(gè)研究重點(diǎn)。
4、全程自養(yǎng)脫氨氮(CANON)
與其它工藝相比,全程自養(yǎng)脫氨氮系統(tǒng)的優(yōu)點(diǎn)主要表現(xiàn)在:
(1)不必外加有機(jī)碳源。因此,在處理低C/N比廢水時(shí)能節(jié)省大量能源;
(2)對(duì)亞硝氮的供應(yīng)沒(méi)有要求,含有高氨氮的廢水可直接進(jìn)入反應(yīng)器;
(3)盡管該系統(tǒng)要求限氧,但不嚴(yán)格要求厭氧,因此,在實(shí)際操作中,氧氣的控制比較容易。目前,全程自養(yǎng)脫氨氮系統(tǒng)的處理能力仍然很低,對(duì)其機(jī)理也不十分明確,但污泥接種體比較容易大量生長(zhǎng),接種的硝化污泥很容易在活性污泥中產(chǎn)生,這表明該系統(tǒng)可應(yīng)用于工程實(shí)踐。氧限制自養(yǎng)硝化反硝化(OLAND)工藝是全程自養(yǎng)脫氮的典型工藝。
Kuai等人提出了OLAND工藝,該工藝的關(guān)鍵是在活性污泥反應(yīng)器中控制溶解氧,使硝化過(guò)程僅進(jìn)行到氨氮氧化為亞硝酸鹽階段,由于缺乏電子受體,由NH3-N氧化產(chǎn)生的NO2-N氧化未反應(yīng)的NH3-N形成N2。該反應(yīng)機(jī)理為由亞硝酸菌(Nitrosomonas)催化的NO2-的歧化反應(yīng)。
研究表明,亞硝酸菌與硝酸細(xì)菌對(duì)氧的親和力不同,亞硝酸菌氧飽和常數(shù)一般為0.2~0.4mg/L,硝酸菌的為1.2-1.5mg/L,在低DO條件下,亞硝酸細(xì)菌與硝酸細(xì)菌的增長(zhǎng)速率均下降,然而硝酸細(xì)菌的下降比亞硝酸細(xì)菌要快,導(dǎo)致亞硝酸細(xì)菌的增長(zhǎng)速率超過(guò)硝酸細(xì)菌,使生物膜上的細(xì)菌以亞硝酸細(xì)菌為主體,出現(xiàn)亞硝酸鹽氮積累。OLAND工藝就是利用這2類菌動(dòng)力學(xué)特性的差異,以淘汰硝酸菌,使亞硝酸大量積累。但迄今為止,還不清楚這些微生物群體是否與正常的硝化菌有關(guān)聯(lián)。
OLAND工藝是在低DO濃度下實(shí)現(xiàn)維持亞硝酸積累,但是活性污泥易解體和發(fā)生絲狀膨脹。因此,低DO對(duì)活性污泥的沉降性、污泥膨脹等的影響仍有待進(jìn)一步的研究。
聲明:素材來(lái)源于網(wǎng)絡(luò)如有侵權(quán)聯(lián)系刪除。